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Event-history analysis of the diffusion of practices in a social system can show how ac-
tors are influenced by each other as well as by their own characteristics. The presump-
tion that complete data on the entire population are essential to draw valid inferences
about diffusion processes has been a major limitation in empirical analyses and has pre-
cluded diffusion studies in large populations. The authors examine the impacts of several
forms of incomplete data on estimation of the heterogeneous diffusion model proposed
by Strang and Tuma. Left censoring causes bias, but right censoring leads to no notewor-
thy problems. Extensive time aggregation biases estimates of intrinsic propensities but
not cross-case influences. Importantly, random sampling can yield good results on diffu-
sion processes if there are supplementary data on influential cases outside the sample.
The capability of obtaining good estimates from sampled diffusion histories should help
to advance research on diffusion.
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1. INTRODUCTION

Much social research examines diffusion processes involving sequen-
tial interdependence of behaviors within a population (for reviews, see
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Rogers 1995; Strang and Soule 1998). Many recent diffusion studies
use event-history analysis that includes covariates measuring social
similarity or network properties to investigate the paths of social influ-
ence in various populations of persons or organizations (e.g., Marsden
and Podolny 1990; Strang 1991; Myers 1997; Soule and Zylan 1997).
An important limitation of this line of work is the presumed require-
ment that data are complete, in particular, that the event times and rele-
vant characteristics of actors are measured for al] members of the rele-
vant population. This requirement has prevented diffusion analysis in
many empirical settings of considerable interest.

In this article, we use simulation methods to explore the perfor-
mance of diffusion estimators when data are incomplete. We examine
several sources of incomplete data. First, we study the impact of time
aggregation, in which event times are not measured exactly but only
with some imprecision. We then investigate the consequences of ri ght
and left censoring, in which there are no observations on the timing of
either late or early events. Finally, and perhaps most important, we
examine the consequences of analyzing data on samples drawn from
the population rather than on the entire population. In each instance,
our primary aim is to identify patterns of estimation bias and problems
of inference to inform empirical research in the short run and to dis-

cover which issues require further methodological attention in the lon-
ger term.

1.1. MODELING FRAMEWORK AND PRIOR ST UDIES

We work with the additive heterogeneous diffusion model pro-
posed by Strang and Tuma (1993). The model is designed to allow
analyses of the spread of some behavior (e.g., adoption of an innova-
tion) through a closed population. The members of the population are
partitioned into two sets. One set S(¢) consists of members of the pop-
ulation who have experienced the event of interest before time ¢; the
second set N(?) is composed of those who have not yet had the event
by time 7 and so remain at risk. The model specifies the hazard rate for
the members of M) as the sum of two components. One component
isan individual’s hazard rate independent of social influences; it is the
ordinary hazard rate found in survival and event-history analyses. The
second component comprises the combined social influence of other
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actors in the population; in a diffusion process, influence comes frgm
the other actors who have previously had the event. In the diffusion
model proposed by Strang and Tuma, these two components are
summed, giving

r,(t) =exp(@x, ) +exp(B'v,) ;ixpw'w.‘ +8Z,,)- (1)
seS(¢

Here,

e Xx,isavector of variables describing n’s propensity to have the event in-
dependent of intrapopulation influences; o . _

» v, is a vector of variables describing n’s susceptibility to intrapopulation
influences; ‘ ' '

e w,is a vector of variables describing the mfgcnousness of s (i.e., the
aBility of s to influence others in t.he populat}on); anfi _

e z,. is a vector of variables describing the social proximity of n and s.

This model has been employed in a variety of studies of the adop-
tion of social practices (for a review, see Strang and Soule 1998).
Among the findings of these studies are that adoption ev'ents are more
influential when they occur to actors that have network linkages to the
potential adopter (Strang and Tuma 1993; Greve 1995, 1996) or are
similar to the potential adopter (Strang and Tuma 1993; Dav1§ aqd
Greve 1997; Soule and Zylan 1997; Greve 1998), that heterogenglty in
an innovation’s value to actors affects susceptibility to social mflu—
ence (Davis and Greve 1997), and that diffusion of different practices
through a given population can depend on different network Ilnkages
as well as on different characteristics of the members of t'he populagon
(Davis and Greve 1997). Thus, the heterogeneous diff}lswn merl 1s.a
productive tool for examining the effects of network links on mimetic

ior. o
belllias\;imates are obtained by maximizing the logarithm of the hkely
hood function (Strang and Tuma 1993). Under very general cs)nd.l-
tions,! maximum likelihood (ML) estimators have good properties in
large samples; they are asymptotically normal, unbiased, and consis-
tent. Tuma and Hannan (1984, chap. 5) demonstr'ated that th(?se }arge
sample properties translate well for an expo'nentlal. model with mdg-
pendent random samples of event histories in the sizes usual!y avail-
able to sociologists (i.e., at least a few hundred cases). Since the
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mode.l they studied did not include any social influences, it could not
be said a priori whether ML would yield high-quality estimates of
the parameters in the additive heterogeneous diffusion model in
equation (1).

Greve, Strang, and Tuma (1995) performed an extensive Monte
Carlo Stl.ldy of the quality of ML estimators of the parameters in (1)
when using complete data on a population’s diffusion history. They
explored thfe effects of different sets of coefficients for covariates, dif-
ferent proximity structures, and model misspecification. They fc;und
that ML estimation recovers the parameters of the model from com-
Plete data when the model is correctly specified (i.e., includes the
actual variables affecting diffusion). They also evaluated ML estima-
tors of the parameters in (1) for various types of specification errors
Inc.ludmg extraneous variables (i.e., ones with no true effect) in thé
estimated model had very little effect on the ML estimators. As one
V\./ould.expect, the exclusion of a covariate used to generate the diffu-
ston history worsened estimation, especially when the omitted vari-
able affc?cted susceptibility or infectiousness rather than an actor’s
propensity to experience the event. They also developed strategies for

locating effects in the propensity, susceptibility, or infectiousness
term of the model.

1.2. INCOMPLETE DATA ON THE POPULATION

The above studies, as well as other research known to us, assume
that data on all events within a bounded population are analyzed. The
presumption that diffusion analysis requires complete data on the en-
tire population greatly limits the topics susceptible to inquiry because
such data are difficult to obtain in many situations and impossible in
qthers. Itis thus useful to distinguish the contexts that produce estima-
tion problems from those that do not and to consider what forms of
supplementary data can aid estimation. To do $0, we investigate the
following sources of incomplete data:

1. time-agg_regated observations of events,
g. observations that are incomplete on the right (right censored),

. observations that are incomplete on the left (left
truncat
censored), ( ed and/or left
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4. random samples of observations with equal sampling probabilities,
and
5. other selected sampling plans.

All of these situations occur often enough to warrant attention.
Measurement of the times of events can be imprecise, creating the
problem of time aggregation. A diffusion process may not have ended
by the time the data are collected, creating the problem of right censor-
ing. Observations on the first part of a diffusion history may be un-
available because data collection begins after the diffusion process
started. Diffusion histories for the entire population may be incom-
plete either intentionally because data were collected for only a sam-
ple of the population or unintentionally because information on cer-
tain variables is missing for some cases. We denote these conditions as
incomplete data (rather than as missing data) since they differ from the
ideal situation of complete and correct data but also differ from the
classical problem of a data matrix in which some values of variables
are missing for some cases.

Sampling is probably the most important condition to study. When
actions of members of a population are statistically independent, ran-
dom sampling drastically reduces the cost of data collection while
allowing analysts to make unbiased estimates of parameters charac-
terizing very large populations. Indeed, it is often argued that by col-
lecting data on a sample, investigators can focus on measuring vari-
ables accurately and that the greater accuracy of measurements
compensates for the loss of precision resulting from the analysis of
fewer cases.

Unfortunately, the efficacy of even simple random sampling is in
doubt for diffusion studies because of the loss of information on some
of the actors who influence members of the sample; omission of
right-hand-side data on influential actors can be expected to result in
biased parameter estimates. We attempt to identify some simple sam-
pling schemes that allow unbiased estimation of the parameters in the
additive heterogeneous diffusion model, and we also identify some
sampling schemes that do not have this property. Our investigation
may help to guide the design of studies when data on the entire popula-
tion cannot be collected, thereby enabling the study of diffusion when
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social units are numerous or measurement of their characteristics is
expensive.

2. MONTE CARLO PROCEDURES

We conducted all experiments by simulating diffusion histories
governed by equation (1). To do this, we modified a Fortran program
named EHG (Event History Generator),2 which uses Monte Carlo
techniques to generate event-history data. The society (i.e., the popu-
lation) had N* members, in which N* varied from 100 to 600 across
experiments but was constant over time for any given society. Each
diffusion history started at time 0 and ended when every member of
the society had had an event. In the model given by equation (1), every
member of the population eventually has an event with probability 1,
but for certain parameter values, some members of the population
have the event much later than most others in the population.

Each society had a social network in which every individual mem-
ber was proximate (or linked) to g randomly chosen other members. In
most experiments, we chose g to be 3, following the design of Greve
et al. (1995). However, to examine whether differences in network
degree affect the results, we also performed some experiments in
which g was 15. Within a given experiment, the probability that one
member of the society was linked to another member was constant and
statistically independent of all other linkages in the society. Cliques
(i.e., subsets of the population with a high level of mutual linkages)
could arise by chance but were not an intentional feature of our design.

A binary measure of the proximity of a pair of individuals in the
society is simple; the pair has a linkage or it does not. Continuous mea-
sures of a pair’s proximity tend to be more informative because they
distinguish various degrees of closeness and social distance. Greve
et al. (1995) found that social networks with continuous variation in
proximity, which many network measures yield, are estimated with
greater precision than the binary measure examined here. We expect,
therefore, that our study of a binary measure of proximity accentuates
problems resulting from incomplete data and that some problems
found by our study might be reduced in magnitude (though possibly
not eliminated) if a suitable continuous measure of proximity were
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used instead. Our use of a binary measure of proximity in this study is
analogous to miners using a canary to detect potentially dangerous
levels of noxious gases: It helps us locate problems.

The additive heterogeneous diffusion model in (1) allows variables
describing heterogeneity in the vectors for propensity, susceptibility,
and contagiousness of the members of the society. We included one
variable in each of these three vectors; each variable was independ-
ently drawn from a standard Gaussian distribution with a mean of 0
and a variance of 1.

To generate each new diffusion history, pseudorandom techniques
were used to draw a new realization of the social network in the soci-
ety and new realizations of the covariates for all members of the soci-
ety. Results reported below are based on generating and analyzing
data on 1,000 societies subject to each of the conditions we studied.
All diffusion histories use a single set of true parameter values, similar
to the one used by Strang and Tuma (1993) and identical to one used
by Greveet al. (1995). They chose these parameter values based on the
coefficient estimates from reanalysis of the tetracycline diffusion data
(Coleman, Katz, and Menzel 1966). Greve et al. examined how
changes in true parameter values affected the coefficient estimates.

After generating the complete diffusion history for a society, we
then imposed time aggregation, censoring, or some sampling
scheme to create an incomplete data set. The expected sample size in
the incomplete data set was 100, except where noted otherwise. When
we studied the impacts of censoring, there were exactly 100 cases in
the sample. We sorted the cases by their event times and analyzed
either the first 100 cases that had the event (right censoring) or the last
100 (left censoring). In our studies of random sampling, we used
Bernoulli sampling with p as the probability of choosing each member
of the society, such that the expected sample size was a given number,
usually 100. The number of cases in the randomly chosen sample had
a binomial distribution. Thus, the actual sample size could be some-
what larger or smaller than its expected value.

In each experiment (i.e., for each condition studied), we generated
and analyzed 1,000 diffusion histories using a version of the RATE
computer program adapted to diffusion studies by Strang and Tuma
(1993). To summarize the results, we recorded and report the means
and standard deviations of all parameter estimates. To learn whether
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the estinpted confidence intervals were consistent with the chosen
level of s1gx}iﬁcance, we also tallied the frequency with which the true
value lay .w1thin the nominal two-sided 90 percent confidence interval
of the e.stlmated parameter. The nominal two-sided 90 percent confi-
dence interval equals the estimated parameter plus/minus its esti-
mated standard error multiplied by 1.645, the critical value based on a
large.-sa{nple Gaussian approximation. We also tallied the frequenc
of rejections of the null hypothesis thata given parameter is zero usiny
the 10 percent level of si gnificance, but we do not report them becausg
they were nearly always close to 100 percent. In conditions in which
1tche f:iequency of correct rejection of the null hypothesis was low, we
t 1?::6 i I:lslta::a;fmﬁdence Intervals were also imprecise. We focus on
'I.'hese experiments are designed to let us assess the model and esti-
mation pr'ocedure under conditions similar to those encountered b
many social scientists studying diffusion processes. Limiting the sam)-,
ple to 100 cases helps to establish the properties of the model and esti-
mators when the number of cases analyzed is relatively small. Due to
tl.IC l}engthy computation time involved in simulating diffusio;x histo-
ries in l'arge populations (see the appendix), we did not study popula-
tions Wlth more than 600 cases. We emphasize that simulation of the
diffusion histories of large populations is extremely time-consuming
Parameters of the model are readily estimated from much larger data;
sets than those analyzed in the studies reported below.

3. RESULTS

3.1. TIME AGGREGATION

Tque aggregation occurs when the observation plan does not record
eventtimes exactly but with a certain degree of imprecision. To give an
empirical example, archives may record the dates of events to the
nearest day, month, or year and not the exact moment of occurrence
Sucfh data tell only the time interval (e.g., which day, month, or year) in.
which an event occurred. Time aggregation can make truly sequential

events appear to have occurred simultaneous i i
ven , producin
ties 1n event times. P B artifactual
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Some degree of time aggregation usually occurs in the collection of
event histories. For example, governmental decisions and organiza-
tional actions are often dated to the year, and reports of actor behavior
by third parties (such as the press and legal agencies) often record
events only when the source has noticed them. Actors’ own reports of
their recent events also vary in precision. Longitudinal (panel) surveys
may record events intermittently because continuous observation is
too costly (Coleman et al. 1966) or too burdensome on respondents.

Time aggregation in ordinary continuous-time parametric hazard-
rate models has been studied by Petersen (1991) and Petersen and
Koput (1992). They found that time aggregation leads to biased esti-
mation when the observed times are treated as accurate and that the
bias is large if the measurement interval is large relative to the average
waiting time to an event. They learned that bias could be reduced by
choosing the event time as the midpoint of the interval, or even earlier,
with an earlier time being optimal when the hazard rate was high.
They obtained unbiased estimates, however, only when using a likeli-
hood that took into account the aggregation of event times.

These previous results are suggestive but do not transfer directly to
diffusion analyses. In diffusion studies, time aggregation produces the
additional problem of imprecise updating of the contagion component
of the model. The diffusion model assumes that actors who have previ-
ously had events can affect the hazard rate of those who have not yet
experienced the event. Thus, social influence runs strictly from earlier

events to later events and not from future events to previous events.
Consequently, a researcher must make some assumption about how
actors whose event times appear to be tied did or did not influence
each another. A priori itis not obvious which assumption might tend to
minimize bias.

We explored the effect of time aggregation on parameter estimation
by generating the diffusion history for a population of size 100 and
then imposing different degrees of imprecision on the measured event
times before analyzing the data. The diffusion history for a society

was not censored, so an event time was observed for every member of
the population. This procedure was repeated 1,000 times (i.e., for
1,000 societies) for each condition to examine the impact of random
fluctuations in the network and in covariates’ values on estimator
quality and also on statistical inferences based on estimated standard
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errors of parameters. Each diffusion history had no tied event times in
reality or in the finest time resolution that we studied, but roughly a
third of all event times appeared to be tied in the crudest time resolu-
tion. Hence, the time aggregation that we studied ranged from negligi-
ble to extensive.

We report results of analyses that treated events as occurring at the
start of the time interval in which they fell because we found that this
choice led to better estimates than treating events as occurring at either
the midpoint or endpoint of the time interval.> We then performed
analyses making different assumptions about how cases with tied
event times influenced each other. First, cases with tied events were
assumed not to influence each other. Second, cases with tied events
were allowed to influence each other, with the influence starting at the
measured event time. This meant that cases with tied events could
influence each other only for an instant. Third, cases with tied events
were allowed to influence each other, with the influence starting at the
measured event time lagged by one-half of the width of the time inter-
val. The third assumption meant that cases with tied events could
influence one another for a brief period of time. Since these three
assumptions turned out to yield virtually identical results, we report
only the estimates assuming that cases with tied events did not influ-
ence each other.

Table 1 reports the results from the estimation. Panel A shows that
time aggregation leads to biased estimates of the parameters in the
propensity vector. The standard deviations of these parameter esti-
mates increase as the time resolution becomes cruder, indicating a loss
of efficiency. Panel B points to problems of inference concerning
parameters in the propensity vector. The nominal two-sided 90 per-
cent confidence interval contains the true value in fewer than 90 per-
cent of the 1,000 repetitions of the experiment in the case of the pro-
pensity vector, although roughly the correct percentage in the case of
the effects of the susceptibility, contagion, infectiousness, and prox-
imity variables. Panel C shows that under time aggregation, the per-
centage deviation of the estimate from the true value increases for
parameters in the propensity vector but is not much different for the
other parameters in the model.

Although the deterioration in the quality of estimation is apparent
only for the propensity term in the model, it is large enough to imply
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TABLE 1: Time-Aggregated Data

Time Resolution

Parameter True 0.0001 0.01 0.02 0.04 0.1

Panel A: Mean ML estimate
(standard deviation)

Propensity intercept -6.0 -6.0(0.7) -6.4(1.1) -6.4(1.1) -6.3(1.3) -5.8(1.4)
Propensity covariate 50 5.0(0.5 54(08) 55(09) 54(1.0) 51(L1)
Susceptibility 2.0 2.0(0.1) 20(0.1) 20(0.1) 20(0.1) 2.0(0.1)
Contagion intercept -8.0 -8.2(0.7) -8.1(1.1) -8.0(0.7) -8.1(0.9) -8.0(1.1)
Infectiousness 20 2.1(05) 21(0.5) 2.0(0.5) 20(0.6) 2.0(06)

Social proximity 40 4.1(04) 4.0(0.4) 4.0(04) 4005 3.9(0.6)
Panel B: Percentage of true
values within nominal

90 percent confidence interval

Propensity intercept 90 79 75 70 57
Propensity covariate 90 72 66 63 53
Susceptibility 90 88 88 89 91
Contagion intercept 91 89 87 86 86
Infectiousness 90 90 88 86 86
Social proximity 91 92 91 91 91

Panel C: Percentage deviation
from true value

Propensity intercept 9 14 15 16 17
Propensity covariate 8 14 15 16 17
Susceptibility S 6 6 6 6
Contagion intercept 8 7 7 7 8
Infectiousness 17 19 19 19 20
Social proximity 9 8 9 9 10

NOTE: ML = maximum likelihood.

that a high degree of time aggregation is undesirable. In other analy-
ses, we found that setting event times to the midpoint or endpoint of
the interval led to even worse estimates of the parameters in the pro-
pensity vector, with clear bias and overly narrow confidence intervals.
These alternative schemes did not, however, adversely affect the qual-
ity of estimation of the parameters in the other vectors.

Table 1 also indicates, however, that even substantial time aggrega-
tion produces no detectable bias in the estimates of contagion effects.
The contagion intercept and the influence of susceptibility, infectious-
ness, and social proximity variables are all estimated accurately. This
is a surprising and important finding because artifactual ties due to
time aggregation are a common occurrence in empirical studies.




446  SOCIOLOGICAL METHODS & RESEARCH

To understand the good estimation of the parameters in the suscep-
tibility, contagion, infectiousness, and proximity terms, despite poor
estimation of the parameters in the propensity term, it helps to view
time aggregation as simultaneously coarsening the time scale and
shifting the observed event times to the chosen point in the interval
(the start of the interval in the results we report). The coarsening
increases standard deviations of all parameter estimates, as one would
expect to happen when information is lost. The shift in the event time
causes bias in the estimates in the propensity vector, as it does in stan-
dard, nondiffusion event-history analyses (Petersen 1991; Petersen
and Koput 1992). In contrast, estimates of the parameters in the other
terms of the model rely mainly on the duration between an influential
event and an influenced event. Since these event times are shifted by
the same amount on average, there is no apparent bias in the estimated
parameters in the social influence terms of the model.

Time aggregation impairs estimation of the propensity to have the
event but does not appreciably bias the estimation of the effects of
covariates in the susceptibility, infectiousness, and proximity terms.
Estimates are more precise when there is less time aggregation and,
other things being equal, when the starting point of the time interval is
treated as the event time.

3.2. INCOMPLETE OBSERVATION
ON THE RIGHT (RIGHT CENSORING)

Asis well known, usually right censoring is relatively unproblematic
when estimating hazard-rate models from event-history data. Even
small samples with extensive right censoring can yield high-quality
estimates provided the model is correctly specified (Tuma and Hannan
1978). One can hope for a similar result when estimating equation
(1) from right-censored diffusion histories, but one cannot draw a
clear conclusion a priori because of the model’s unique features. In the
diffusion model, cross-case interdependence may be difficult to cap-
ture if too few event times are observed due to right censoring.

To examine right censoring, we first generated a diffusion history
for the entire society and then sorted members of the population by the
times of their events. The times of the first 100 events were recorded
exactly as generated. The later events of the other cases were treated as
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censored at the time of the 100th event. This censoring scheme, an
example of what statisticians call Type II censoring (cf. Miller 1981),
mimics the approach of a researcher who waits for the occurrence of
the first 100 events and then censors the event times for the other cases.
We then estimated the diffusion model in (1) from the resulting
right-censored diffusion histories.

The estimates (see Table 2) are rather good. In every condition, the
average estimates are close to the true values of the parameters. There
is little sign of deterioration in estimator quality as the proportion of
censored cases rises to 5/6, although there may be some deterioration
for the contagion intercept and the coefficient of the infectiousness
variable. The efficiency of the estimates does not seem to vary with the
censoring proportion except for the coefficients of the infectiousness
and social proximity variables, which are estimated less efficiently
when the proportion of right-censored cases is high. The nominal 90
percent confidence interval contains the true value in close to 90 per-
cent of the cases, implying that statistical inferences will be correct.
Parameters in the diffusion model can apparently be estimated well
from right-censored histories.

3.3. INCOMPLETE OBSERVATION ON THE LEFT
(LEFT CENSORING AND LEFT TRUNCATION)

Left-censored and left-truncated event histories are troublesome
(Tuma and Hannan 1984, chap. 5; Guo 1993; Wu 1996) even when
there is no cross-case interdependence. We expect problems to be at
least as bad in analyses of diffusion histories because failure to collect
data on the early part of the history leads to two methodological prob-
lems. First, the cases that have had events before observation begins
are truncated (not observed at all); second, the cases that have not yet
had events are left censored (initially observed some time after they
became at risk of the event). In particular, lack of data on early events
may be more damaging when estimating diffusion models rather than
ordinary event-history models because early unobserved events affect
the timing of later observed events, causing a form of specification
bias. Nevertheless, it is important to study estimator quality when ana-
lyzing diffusion histories that are left censored and/or left truncated,
because these data problems are so common in certain social scientific
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TABLE 2: Data With Incomplete Observation on the Right (data censored on the right)

Propensity
—_— Contagion ) Social
Condition Intercept Covariate Susceptibility Intercept Infectiousness Proximity
Panel A: Mean ML estimate
(standard deviation)
True value -6.0 5.0 20 -8.0 2.0 40
None censored -6.0(0.7) 50(.5 20(.1) -82(0.7) 21(0.5) 4.1(04)
1/6 censored -6.0(0.7) 51(05) 20002 -82(09) 2.1(0.5) 4104
1/3 censored -6.1(0.8) 5.1(05) 20(.2) -82(0.9) 21(0.5) 4.0(04)
1/2 censored -6.0(08) 5005 2002 -83(09 21(0.6) 4.1(04)
2/3 censored -6.0(0.7) 5004 2002 -84(9) 21(1.00 4.1(0.6)
5/6 censored -6.1(0.7) 5004 20(0.2) -8.8(4.5) 23(2.1) 4.0(1.0)

NOTE: ML = maximum likelihood.

fields (e.g., organizational studies) in which diffusion processes are of
great interest (see Kogut and Parkinson 1998).

To simulate data with these problems, we again generated the diffu-
sion history of the entire society and sorted cases by the event times.
Now, however, we recorded the true values of the covariates and the
event times of the last 100 cases to have events. The likelihood func-
tion excluded data on the cases with events before the last 100 cases.
We studied two conditions. In one, the last 100 observed cases were
given start times equal to zero (the true time at which they became at
risk). In the second, the censoring time in the society was treated as the
start of the diffusion process for all cases. We show results only for the
second condition in which the start time equals the censoring time
because it yielded slightly better estimates than the first condition.
The second condition results when researchers unintentionally collect
left-truncated and left-censored data because they are unaware of ear-
lier events.

Table 3 shows how estimator quality suffers under this scheme.
Every parameter estimate is biased for every proportion of unobserved
cases, and biases increase as this proportion increases. Standard devi-
ations of the estimates also increase as the proportion of unobserved
cases increases. In addition, we found that the nominal 90 percent con-
fidence intervals for many estimated parameters were inaccurate.
Only the effect of the susceptibility variable had a bias that could be
called minor, and then only for the lowest proportions of unobserved
cases. Finally, as the proportion of unobserved cases rises, the iterative
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TABLE 3: Data With Incomplete Observation on the Left (data truncated and censored

on the left)
Propensity
Contagion Social
Condition Intercept Covariate Susceptibility Intercept Infectiousness Proximity
Panel A: Mean ML estimate
(standard deviation)
True value -6.0 5.0 2.0 8.0 2.0 4.0
All observed -6.0(0.7) 5.0(0.5) 20(.1) -8.2(.7) 2.1(05) 4104
1/6 unobserved -52(1.6) 4.3(1.8) 2202 -7.0(.8) 14(1.1) 290
1/3 unobserved —-4.7(.7) 36@2.1) 2403) -69(6.7 1.03.3) 1.8(3.3)
1/2 unobserved —46(26) 33310 2604 -62(54) 0729 06(@4.1)
2/3 unobserved" -443.2) 26028 28(05) -63(@113) 09(.3) 0367
5/6 unobserved” —45(8.1) 23449 30(06) -6.1(56) 1.0(80) -1.6(8.1)

NOTE: ML = maximum likelihood.
a. 1 of 1,000 repetitions failed to converge.
b. 6 of 1,000 repetitions failed to converge.

search for estimates that maximize the logarithm of the likelihood
function failed to converge in some instances.* Parameters of the diffu-
sion model, like parameters in event-history models in which there are
no cross-case influences, are not estimated well from diffusion histo-
ries subject to left truncation and left censoring.

It may be possible to derive a correct likelihood function to use
when estimating the diffusion model from left-truncated and left-
censored event histories, as has been done for some other models (e.g.,
Guo 1993). However, the interdependence of early and late events in
the diffusion process greatly complicates this task. Collection of data
on all early events may be a more promising approach than modifying
the likelihood function.

3.4. SIMPLE RANDOM SAMPLING

Studies may have data on only a subset of the population as the
result of either a conscious data-collection scheme, an overly narrow
definition of the population’s boundaries, or lack of information on
certain key variables (e.g., due to survey nonresponse). To understand
consequences of the first, we studied the impact on estimator quality
of some simple random sampling schemes. We begin with the funda-
mental situation in which a random sample was chosen from the
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population using a fixed sampling probability p for each member of
the population. Thus, in this set of experiments, the sample size has a
binomial distribution.’

3.4.1. Estimation Without
Adjustments for Sampling

The simplest approach is to estimate the diffusion model from data
on the sample without adjusting for the unobserved influence on the
sampled cases of the nonsampled cases (i.e., those in the population
but not in the sample). In this experiment, we generated the diffusion
history for the entire society and then drew random samples of cases
from the whole society. We estimated the parameters of the diffusion
model using only the data on the sampled cases. One expects this
approach to yield biased estimates because there are inaccurate mea-
surements of some right-hand-side variables, namely, those pertain-
ing to cross-case influences.

Table 4 summarizes the results of these experiments. Some esti-
mated parameters are biased but not all. For the conditions that we
studied, the estimated parameters in the propensity vector are unbi-
ased. There is also no apparent bias in the estimated coefficient of the
susceptibility variable. Presumably, these effects can be estimated
well because they refer to measured characteristics of the actors at risk
of the event rather than to the unmeasured characteristics of the
nonsampled cases, some of which may have influenced those in the
sample.

Conversely, the estimated effects of the infectiousness and social
proximity variables are biased toward O and are difficult to detect
when the sampling probability p is small. Some such bias is apparent
even when p is as large as 1/2, and the bias increases as p decreases.
For example, when p is 1/6, the effects of the infectiousness and prox-
imity variables are correctly detected as differing from O in only half
of the repetitions of the experiment. The downward biases in these
estimated effects are offset by an upward bias in the estimate of the
contagion intercept. The true value of the contagion intercept is —8,
and it is slightly underestimated using data on the whole population.
But when p is 1/6, the average estimate is —4.8, which means that the
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TABLE 4: Random Sampling With No Adjustments

Propensity
Contagion Social

Condition Intercept Infectiousness Proximity

Intercept Covariate Susceptibility

Panel A: Mean ML estimate
(standard deviation)

True value -6.0 5.0 20 -8.0 2.0 4.0

100 from 100 -6.0(0.7) 5.0(0.5) 200.1) -82(0.7 21(05) 4.1(04)
100 from 150 -6.0(0.9) 5.0(0.6) 200.2) -7627 1.9(1.3) 3.5(0.9)
100 from 200 -6.0(0.9) 5.0(0.6) 2002 -72(5.8) 1.8(29) 3.1(1.5)
100 from 300 —6.1(1.1) 5.1(0.8) 20(0.2) -58@3.2) 1.1(1.5) 1.2(5.1)
100 from 600 -6.2(1.4) 5209 20(0.2) -4.8(.5) 04(1.3) -1.509.2)

NOTE: ML = maximum likelihood.

estimate overstates the true value by a factor of 24.5 = exp(3.2) =
exp(—4.8)/exp(-8).

Moreover, there are inferential problems when estimating the diffu-
sion model from a random sample without making any adjustments.
The percentage of true values within the nominal 90 percent confi-
dence intervals is consistently less than 90 percent, and it decreases as
p is reduced. The decreases are especially marked for the contagion
intercept and the effect of the infectiousness variable.

In sum, estimation of the diffusion model from a random sample of
cases without any adjustments for sampling yields unbiased estimates
of propensity and susceptibility effects but biased estimates of effects
of infectiousness and social proximity. The extent of the bias increases
as the sampling probability decreases.

3.4.2. Estimation With Supplementary
Data on Nonsampled Cases

The bias found above results from the unmeasured influence of
events occurring to nonsampled cases. Intrapopulation influences are
a key aspect of diffusion processes, as well as some other social pro-
cesses, such as competition for common resources (e.g., Hannan and
Carroll 1992). Thus, a method for satisfactorily adjusting for the influ-
ence of nonsampled cases on the sampled cases not only is necessary
for research on diffusion but may also suggest extensions to research
on other kinds of cross-case influences.
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One possible remedy is to adjust the estimation procedure to try to
account for sampling. We explored several possibilities but focus here
on a random sampling with supplementary data approach, the only
strategy we considered that proved fairly successful. In this approach,
we obtained supplementary information about the nonsampled cases,
in particular, their event times, infectiousness, and proximity to the
sampled members (but not their own propensity, susceptibility, or
proximity to other nonsampled cases). The rationale for this approach
is that information on nonsampled cases is needed only to the extent
that it contributes to the likelihood function formed for the sampled
cases.

In some contexts, collection of supplementary data on nonsampled
cases is as burdensome as collecting complete data on all covariates
for the entire population. This approach becomes attractive, however,
where social proximity, infectiousness, and event times can be mea-
sured fairly easily, while attributes relating to propensity and suscepti-
bility are hard to obtain. For example, in studies of business organiza-
tions, common measures of social proximity (e.g., ownership ties,
directorship ties, and geographical location) are readily available, but
organizational characteristics affecting the intrinsic propensity to
adopt some practice (e.g., a new organizational strategy) can be very
costly to measure. It is then sensible to limit the expensive data collec-
tion (e.g., measurement of propensity variables) to a sample but col-
lect data on proximity and event times for the entire population.®

The results of this experiment are given for eight conditions,
reported in the rows of Table 5. The first three rows give the results for
complete data on the whole society for three different population
sizes: 100, 200, and 300. These results provide a basis of comparison
for other conditions in which the model is estimated from random
samples of similar sizes. The next three rows give results for different
population sizes when the sampling probability was one-half so that
the expected sample size was 100, 200, and 300, respectively. The
estimated parameters are less precise for each of the three sampled
conditions than for an entire population of a similar size. Still, the esti-
mated parameters based on the random samples are fairly close to the
true values and have only slightly larger standard deviations than in
the comparable similar-sized population.” (Compare results in rows 4
and 1, rows 5 and 2, and rows 6 and 3.) As the population and sample
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TABLE 5: Random Sampling With Supplementary Data

Propensity
_— Contagion Social
Condition Intercept Covariate Susceptibility Intercept Infectiousness Proximity
Panel A: Mean ML estimate
(standard deviation)
True value -6.0 5.0 2.0 -8.0 2.0 4.0
100 from 100 -6.0(0.7) 5.0(0.5) 20(0.1) -82(0.7) 21(0.5) 4104
200 from 200 -6.0(0.5) 5.0(0.4) 20(0.1) -8.1(0.6) 20(04) 4.0(03)
300 from 300 -6.0(0.5) 5.0(0.3) 20(0.1) -8.1(0.5) 20(03) 40003
100 from 200 -6.1(0.9) 5.1(0.6) 200.1) -82(1.1 2.1(0.6) 4.1(0.5)
200 from 400 -6.1(0.7) 5.1(04) 20(0.1) -8.2(08) 21(0.5) 4104
300 from 600 -6.1(0.6) 5.10.4) 20(0.1) -81(0.7) 20(04) 4004
100 from 300 -6.2(1.1) 5207 20(0.1) -83(.2) 2107y 4107
100 from 600 -6.3(1.5) 52(.0) 20(0.1) -85@3.1) 22(1.3) 4.0(1.2)
Panel B: Percentage of true values within
nominal 90 percent confidence interval
100 from 100 90 90 90 91 90 91
200 from 200 89 89 90 88 87 90
300 from 300 89 90 90 88 89 90
100 from 200 88 87 89 86 87 89
200 from 400 90 90 90 86 87 88
300 from 600 91 90 89 86 86 89
100 from 300 88 87 91 87 87 89
100 from 600 88 87 90 83 84 88
Panel C: Percentage
deviation from true value
100 from 100 9 8 5 6 17 8
200 from 200 7 6 4 6 15 6
300 from 300 6 5 3 5 13 6
100 from 200 12 9 6 9 22 10
200 from 400 9 7 4 7 17 8
300 from 600 7 6 3 7 16 7
100 from 300 13 10 5 10 24 12
100 from 600 16 13 6 15 32 16

NOTE: ML = maximum likelihood.

sizes increase, deviations from the true value decline (panel C), as do
estimated standard errors (not shown). The percentage of estimates
lying within the nominal 90 percent confidence interval i§ just below
90 percent for most parameters in both the full populatu?n and the
sampled conditions (panel B). The sampled conditions yield some-
what lower percentages of estimates within the nominal 90 percent
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confidence interval for the contagion intercept and the infectiousness
variable, however.

The last two rows give results for random samples with an expected
size of 100 that are drawn from populations of 300 and 600, respec-
tively. One should compare the results in rows 7 and 8 with those in
row 4 and all three of these rows with the results for the similar-sized
population in row 1. As the sampling probability p decreases, the esti-
mates become less efficient even though the expected sample size is
the same. The sample of 100 from a society of 600 has rather impre-
cise parameter estimates as shown by the high percent deviation from
the true value (panel C). This result suggests that low sampling proba-
bilities should be avoided.

Random sampling with inclusion of data on the event times, infec-
tiousness variables, and social proximity of nonsampled cases that
have had events yields unbiased estimates. The efficiency of these esti-
mates is lower than for data on an entire population of a similar size,
and it decreases as the sampling probability decreases.

3.4.3. Estimation From Samples
of High-Degree Networks

When estimating a heterogeneous diffusion model, a particular
concern is whether characteristics of the social network in the popula-
tion affect the bias and efficiency of parameter estimates. Results
using data on the entire population (Greve et al. 1995) suggest that
continuously valued network measures, such as structural equivalence
(Burt 1980), yield better estimates than the dichotomous measures of
proximity used here and that high-degree networks (i.e., ones in which
actors have many linkages) yield less efficient estimates than low-
degree networks (i.e., ones in which actors have few linkages). These
findings point to the value of determining if the above results hold
when individuals have many linkages. In the next set of experiments,
we generated networks in which each member was socially proximate
(i.e., linked) to 15 randomly chosen others. We studied the same eight
conditions reported in Table S. The results are given in Table 6.

Conditions based on data for the entire population of a given size
yield estimates that are no more biased in the 15-tie network (Table 6)
than in the 3-tie network (Table 5). But the estimates in the 15-tie

i
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TABLE 6: Random Sampling From a High-Degree Social Network

Propensity
Contagion Social

Condition Intercept Covariate Susceptibility Intercept Infectiousness Proximity

Panel A: Mean ML estimate
(standard deviation)
True value -6.0 5.0 20 -8.0 20 40

100 from 100 -6.1(1.1) 5.10.7 200.1) -86(Q23) 21(004) 45Q25)
200 from 200 -6.0(0.7) 5.0(04) 20(0.1) -8.0(0.7 20(03) 4007
300 from 300 -6.0(0.6) 5.0(04) 20(0.1) -8.0(0.3) 20(0.2) 4.0(03)
100 from 200 -6.1(1.1) 5.1(0.8) 200.1) -83(1.4) 21(04) 4.2(l6)
200 from 400 -6.1(0.8) 5.1(0.5) 2.0(0.1) -8.0(0.5) 20003) 4.0(0.5)
300 from 600 -6.1(0.6) 5.1(0.4) 20(0.1) -8.0(04) 20(03) 4.0(03)
100 from 300 -64026) 530149 200.1) -84(14) 21(0.5) 42(L5)
100 from 600 -6.4(2.0) 53(1.3) 20(0.1) -84(1.6) 21(0.7) 42D

NOTE: ML = maximum likelihood.

network do tend to have larger standard deviations. The differences
between the results for the 15-tie and 3-tie networks decrease as the
population size increases.

In conditions estimated from data on the sampled cases plus sup-
plementary data on the nonsampled cases’ event times, proximity, and
infectiousness, the standard deviations of the estimated parameters in
the propensity vector are larger for the 15-tie network (Table 6) than
for the 3-tie network (Table 5). However, the standard deviations of
most of the estimated parameters pertaining to intrapopulation influ-
ences are smaller for the 15-tie network than the 3-tie network, espe-
cially when the expected sample size is greater than 100, suggesting
that coefficient estimates of social influence based on sampled data
are more efficient in high-degree networks in which actors have many
links.

Small populations with high-degree networks cause problems in
estimating the contagion intercept and proximity effect. However, ran-
dom sampling with inclusion of data on the event times, infectiousness
variables, and social proximity for the nonsampled cases satisfacto-
rily corrects biases due to sampling. Moreover, for a given expected
sample size, estimates of the contagion intercept and the social prox-
imity effect are more efficient when the population is larger.
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3.5. ESTIMATION FROM OTHER SAMPLING PLANS

We have found that the quality of estimates using supplementary
data on nonsampled cases is good when the sampling probability is the
same for all members of the population. This sampling design is, how-
ever, only one of many, and it is among the simplest. Other common
random sampling designs include clustered sampling, stratified sam-
pling, and sequential sampling (e.g., see Kish 1965), as well as still
others that combine selected features of these designs. These various
intentional sampling designs are usually employed to achieve greater
cost-effectiveness.

To complicate matters further, the implementation of a particular
intentional sampling design often yields an observed sample that
lacks the intended properties because data on certain members of the
target sample are missing either entirely or for certain key variables.
The likelihood that there are complete data on a member of the popu-
lation may be related to the explanatory covariates, the outcome bein g
studied, or both.

Whatever the intentional sampling design, the observed sample in
sociological studies of diffusion is more likely to omit less prominent
actors, such as less-developed nations, small firms, or low-status
members of a community. A researcher’s difficulty in obtaining data
on less prominent actors may be mirrored by inattention to these
actors by the other members of the population. In this case, the infec-
tiousness of the observed sample members tends to be greater on aver-
age than the infectiousness of the entire population. In contrast, in epi-
demiological research, less prominent actors may be more infectious
than the population as a whole, leading infectiousness to be lower in a
sample than in the population. Likewise, the sample distribution of
other independent variables may also differ from the population-level
distribution of these same variables. In practice, researchers rarely
know how the distribution of independent variables in a sample differs
from the distribution in the population.

Full treatment of complex sampling designs and patterns of miss-
ing data lies outside the scope of the present study. However, we con-
sidered three sampling schemes that are somewhat more complicated
than the simple random sampling scheme considered in section 3.4. In
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all these experiments, we continue to include supplementary data on
nonsampled cases.

We first studied a simple stratified sampling design in which a vari-
able used to stratify the sample was uncorrelated with the independent
variables affecting the diffusion process. The estimates were compa-
rable in quality to those for samples chosen randomly with a fixed
sampling probability. Since empirical research rarely employs a strati-
fied sampling design in which the stratification variables are com-
pletely unrelated to all explanatory variables, we do not report the
numerical results here, but they are available from the authors on
request.

We next performed the following Monte Carlo experiment. First we
generated a pseudorandom standard Gaussian variable Z that had cor-
relation p = 0.7 with one of the covariates affecting the diffusion pro-
cess. Then, we included a member of the population in our sample if
the realization of Z exceeded a certain value z' chosen to give a certain
expected sample size. In our experiments, we chose the population
size to be 300 and the expected sample size to be 100, implying z' =
0.43.

We studied the three conditions in which Z is correlated with the
propensity, susceptibility, or infectiousness covariate, respectively. In
each condition, Z was correlated with only one covariate and was
uncorrelated with the other two covariates in the model. For each con-
dition, we generated diffusion histories for 1,000 societies and esti-
mated the model using the same likelihood function as before, thereby
ignoring the sampling design.

Table 7 reports the results. There are no particular problems with
either point estimates or inferences based on estimated standard errors
in the conditions in which the sampling process is correlated with con-
tagion effects. The estimated intercepts in the correlated sampling
designs are slightly lower than the true values, but the same pattern
also occurs in the uncorrelated sampling design with a fixed probabil-
ity (cf. Table 5). The percentage of true values within the nominal 90
percent confidence interval is usually slightly below the desired value
of 90 percent, implying that the nominal confidence intervals are
slightly too narrow.
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TABLE 7: Sampling Probability Correlated With a Covariate

Propensity
Contagion Social
Condition Intercept Covariate Susceptibility Intercept Infectiousness Proximity
Panel A: Mean ML estimate
(standard deviation)

True value -6.0 5.0 20 -8.0 2.0 4.0

No correlation -62(1.1) 5207 20(0.1) -83(1.2) 21(0.7) 41(0.7)

Propensity, p =0.7 -6.0(0.6) 50(04) 20(02) -82(1.2) 21(0.7) 4.1(0.6)

Propensity, p = -0.7 -82(9.6) 7.0(109) 20(0.1) -83(1.3) 21(0.7) 4.1(0.5)

Susceptibility, p = 0.7 -6.2(1.3) 51(08 2002 -82(1.0) 2.1(0.6) 4.1(0.5)
Susceptibility, p=-0.7 -6.1(0.8) 5.1(0.5) 20(0.2) -84 1.3) 21(0.7) 4.2(0.6)
Infectiousness,p=0.7  —6.1(1.0) 5.1(0.6) 20(.1) -82 (1.0) 2.1(06) 4.1(05)
Infectiousness, p=-0.7 6.1 (1.0) 5.1(0.7) 20(0.1) -83(1.2 2.1(0.6) 4.1(0.6)

NOTE: Population size = 300; expected sample size = 100. ML = maximum likelihood.

One condition does appear troublesome, however. When Z is nega-
tively correlated with the propensity covariate, the efficiency of both
parameter estimates in the propensity term is very low. In this condi-
tion, the nominal 90 percent confidence intervals for both parameters
are too narrow: The true values for the propensity intercept and the
effect of the propensity covariate lie within their nominal 90 percent
confidence intervals in fewer than 80 percent of the repetitions of the
experiment. Moreover, the estimates of the two parameters in the pro-
pensity vector may be biased, although it is hard to be certain because
the standard deviations of these two parameter estimates are so large.

The survivor function estimated from the sample data provides a
helpful clue to these estimation problems. The exclusion of high-
propensity cases causes the estimated survivor function to have a
characteristic pattern of upward bias that starts very early. Since high-
propensity cases have large hazard rates relative to others in the popu-
lation, especially early in the process, omitting these actors from the
sample causes a dearth of early observed events, much as occurs in
left-truncated and left-censored data, which we found to be estimated
with bias (section 3.3). By contrast, sampling on a variable correlated
with the susceptibility covariate mainly biases the estimated survivor
function at later times, and sampling on a variable correlated with the

infectiousness variable does not appear to bias the survivor function
much at all.
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To study the problems that may arise when sampling depends even
more strongly on the explanatory variables, we next examine samples
chosen by omitting cases when one of the explanatory variables has
values outside a specified interval. This more extreme sampling
scheme is designed to let us explore a form of “worst-case scenario”
rather than to examine a common empirical practice.

For this set of experiments, we again chose an expected sample of
size 100 from a population of 300 by including all members whose
values on one of the explanatory variables were either high (z > 0.43),
medium (—0.43 < z £0.43), or low (z < —0.43). These values are the
ones that divide the cumulative probability distribution function for a
standard Gaussian random variable into thirds. (Recall that in all of
our experiments, the covariates were generated to have a standard
Gaussian distribution.)

The results are given in Table 8. We again find that sampling pro-
cesses related to contagion effects yield good estimates, although
standard errors are somewhat higher than in the situation of equal-
probability sampling (Table 5). But truncation of the sample based on
intrinsic propensities yields poor estimates. Retention of only moder-
ate- or low-propensity actors leads to biased and inefficient estimation
of propensity effects. And retention of only high-propensity actors
leads to inefficient estimation of contagion effects, presumably because
these effects do not contribute substantially to outcomes in this subset
of the population.

We thus find that diffusion estimates are surprisingly robust when
sampling probabilities are related to variables affecting the contagion
component of the model, but not when sampling is related to propen-
sity effects. In particular, accurate data on the early period of the dif-
fusion process appear particularly important for good estimation of
the diffusion model.

4. IMPLICATIONS FOR
DATA-COLLECTION STRATEGIES

The implications of our results for data-collection strategies for dif-
fusion studies are clear. Leaving aside issues surrounding sampling,
the data requirements for obtaining good estimates of the additive
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TABLE 8: Truncated Sampling

Propensity
Contagion Social
Condition Intercept Covariate Susceptibility Intercept Infectiousness Proximity
Panel A: Mean ML estimate
(standard deviation)
True value -6.0 5.0 20 -8.0 2.0 4.0
Propensity high -6.1(0.6) 5.004) 2103) -8.6(24) 22(1.2) 42(1.2)
Propensity medium -103(13.4)13.7(339) 21(0.2) -83(1.0) 21(0.6) 4.1(0.5
Propensity low -0.3(18.1)14.9(33.8) 21(0.1) -8.3(1.0) 2.1(0.6) 4.1(0.5)
Susceptibility high -6.3(0) 52(.2 2002 -83(1.2 21007 4.1(0.6)
Susceptibility medium  -6.3(1.2) 5.2 (0.8) 20(0.5) -84(.5 21(08) 42(0.6)
Susceptibility low -6.0(0.6) 5.1(0.5) 2003) -89@3.2) 23(1.3) 4414
Infectiousness high -6.2(1.2) 5.10.7) 200.1) -82(.1) 2000.7) 4107
Infectiousness medium  -6.1(0.9) 5.1 (0.6) 20(0.2) -84(1.5) 2.1(0.7) 4.2(0.7)
Infectiousness low -6.1(1.0) 5.1(0.7) 20(0.1) -83(14) 2.1(0.7) 4.1 (0.7

NOTE: Population size = 300; expected sample size = 100. ML = maximum likelihood.

heterogeneous diffusion model in equation (1) are largely those for
other event-history models that lack cross-case influences. Time
aggregation should be minimized to restrict bias in estimated effects
on intrinsic propensities to have the event, but we discovered no spe-
cial problems in estimating contagion effects due to the artifactual ties
that result from time aggregation. And, while right censoring is rela-
tively unproblematic, left truncation and left censoring do cause bia
and should be avoided. '
Sampling poses special problems for diffusion research, however.
Good estimates of propensity and susceptibility effects may be obtained
from samples, which is reassuring for researchers who are only inter-
ested in these effects. But estimates of the effects of infectiousness and
social proximity are downwardly biased in random samples consist-
ing of as many as half of the complete population. Our study indicates
that supplementary data should be obtained if one wishes to obtain
good estimates of the full heterogeneous diffusion model from a ran-
dom sample. Namely, in addition to all relevant data on a random sam-
ple, one should also collect data on event times and the values of
infectiousness and proximity variables for the nonsampled cases that
have had events.® Although the supplementary data are used only as
right-hand-side variables, including them minimizes biases in estimated
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effects of variables in the susceptibility and contagion components of
the model.

One further issue should be noted, however. Throughout this dis-
cussion, we have assumed that the locations of the boundaries of the
relevant population are known, but this assumption is often problem-
atic (cf. Thornton and Tuma 1995). Although this assumption may be
approximately true for many research projects, population boundaries
are sometimes uncertain, and the degree of uncertainty may vary
widely. At one extreme, uncertainty may extend to only a few cases; at
the other, the researcher may not know whether geographical borders
for diffusion of some phenomenon lie at the city, state, national, or
global level. The conduct and costs of a study vary radically depend-
ing on the location of the population’s boundaries. This fact points to
the value of some formal procedure for determining the location of the
actual boundaries of a population in which cross-case influences have
effects.

Our procedure of random sampling with supplementary data (sec-
tion 3.4.2) can be used as the basis of such a formal procedure. Collec-
tion of data on the favored, narrower specification of the population
and on event times, infectiousness, and social proximity for other
cases outside this specified population can be used to test whether
inclusion of the data on the latter cases affects results based on analy-
sis of data on the former cases. This is done by estimating the model
once using the favored, narrower specification of the population and
then again using the broader definition and the procedure that adjusts
for sampling (cf. section 3.4.2). The infectiousness vector of the sec-
ond model should include an indicator variable set to 1 for observa-
tions outside the narrowly defined sample. The test is based on the
estimated coefficient of this indicator variable. This estimate should
be a large negative number (implying low influence) if the narrow
specification of the population is correct. This procedure is heuristic
because the narrower specification of the population is not a random
sample of the larger one. Nevertheless, it is likely to be more informa-
tive than the common approach of defining population boundaries
without testing whether the chosen definition encompasses the actual
population boundaries.

In large social networks, an additional boundary problem is
whether diffusion involves influence only among actors that are
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directly tied to each other or whether there is also influence among
actors with no direct ties. This boundary problem also influences data
collection costs since influence among actors with no direct ties calls
for data on all events in the population. In contrast, influence solely
from connected members of the population requires only data on a
sample and the actors directly linked to sample members. Previously,
we showed that a similar procedure of estimating models with both an
“everybody-influential” specification and a “only-ties influential”
specification helps an analyst choose between these two specifica-
tions (Greve et al. 1995:402-03).

5. CONCLUSION

Our investigation shows that the additive heterogeneous diffusion
model in equation (1) can be estimated well from data with event times
that are measured precisely (but not those measured imprecisely), data
with right censoring (but not left truncation and left censoring), and
data drawn as an equal-probability sample from a larger popula-
tion—provided one also includes data on event times, social proxim-
ity, and infectiousness variables for nonsampled cases that have had
events. Since these requirements for data collection are often feasible,
they mean that the model can be applied in a variety of empirical set-
tings. The requirement that some data on nonsampled cases be col-
lected is onerous but hard to avoid, given that intrapopulation influ-
ences are central to diffusion studies. Indeed, it would be surprising if
one could estimate such models well without observing the acts of
most cases that influence sample members.

As a practical matter, the problem of locating influential actors can
be solved in two different ways. First, one can measure event times in
the population and then collect data on linkages between sampled
cases and nonsampled cases that have already had the event. Second,
one can collect data on the networks of cases in some target sample
and then collect data on event times from those nominated as socially
proximate to those in the original target sample, as in snowball sam-
pling procedures. For the study of very large populations, these data
requirements tend to restrict diffusion studies to situations in which
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few actors have had events (so that it is feasible to obtain data on all
cases that have had events) or situations in which diffusion is strongly
constrained by network ties (so that the total number of actors influ-
encing members of the original sample is not too large). While neither
condition may be met in some contexts, many large-scale diffusion
processes can be investigated using one or the other of these two data
collection strategies.

The ability to estimate the parameters of diffusion processes from
sampled populations is likely to be extremely important for progress
in the study of social influence. The requirement that one collect com-
plete population data limits not only the sizes of populations that can
feasibly be studied but also the kinds of populations that can be stud-
ied. Small villages and neighborhoods are thus popular settings for
diffusion studies of individuals (Rogers 1995), while research on dif-
fusion in larger social systems has seemed not only daunting but also
infeasible. Focused, small-system studies have considerable theoreti-
cal and empirical value, but it is important to examine diffusion pro-
cesses occurring in large populations as well. The results of the simu-
lation experiments reported in this article suggest that the scale and
scope of diffusion studies can be larger than most previous researchers
have presumed.

APPENDIX
Monte Carlo Simulation Procedure

The programs for simulating heterogeneous event histories in general and diffu-
sion histories in particular (EHG) and for analyzing them (RATE), along with the user
manuals, can be found on the Web at www.stanford.edu/~tuma. A brief description of
the algorithm for simulating the event times is given below.

All covariates were generated under the assumption that they have a standard
Gaussian distribution with mean 0 and variance 1. Each realization of a covariate was
drawn independently, except as noted otherwise in the text. We used the GGNML rou-
tine of the IMSL library for this purpose.

To draw each socially proximate observation, we first used the GGUBS routine of
the IMSL library to generate values from a uniform distribution. Then we multiplied it
by N* and rounded up to the nearest integer, yielding the observation number of the
proximate case. The draws were independent except we made a new draw if the same
actor was drawn twice.
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In our study of random sampling, we used the GGBN routine of the IMSL library
to draw Bernoulli (dummy) variables for the sampling indicators.

We used the following algorithm to simulate a diffusion history for a society of
size N* governed by the additive heterogeneous diffusion model in equation (1). The
process starts at time ¢ = 0 and begins with the computation of the propensity term of
the model, exp(a’ x,), and the susceptibility term, exp(B’ v,), for every member n of
the society. These values are saved and used as needed in subsequent steps until the
complete diffusion history for the society has been generated.

Once the first case has experienced the event, the diffusion history for a society is
generated using the following steps in an iterative fashion until every member of the
society has had the event. The procedure is continued until all members of the society
have had the event because the heterogeneous diffusion model implies that eventually
every member of the society has the event. (The time of the last event in the society
can, however, be very large.)

Aftericases have had the event, with the most recent event being at some time ¢, do
the following for each case n of the N* — i cases remaining in Mz,):

1. Compute the value of Z¢e 5(;,) €Xp(Y ‘W +8% ).

2. Draw arealization from a uniform [0, 1] distribution; label it . We used the
GGUBS pseudorandom uniform number routine of the IMSL library for this
purpose.

3. Find the value of the waiting time to the next event, w,, such that F(w) = u,,
where F(w) is the cumulative probability distribution function of the heteroge-
neous diffusion model; see the equations below. (The FORTRAN code for the
inversion is available on the Web at the address given above.)

After the waiting times have been found for all cases in IN{z)), identify the case
with the smallest waiting time. This case becomes the (i + 1)th case to experience the
event. Its waiting time (found above) is relabeled w,,, and its event time is calculated
ast,, =t,+w,,. Move this case i + 1 from V(¢ to S(+,,,) and repeat the above steps for
the remaining N* — (i + 1) cases that are still at risk at the new event time ¢,,.

This procedure is used because each case that has already had the event influences
the remaining cases that have not yet had the event. Consequently, the social influence
term of the model needs to be recomputed after each new event. One cannot compute
event times for all members of the society in a single pass of N* calculations, which is
possible in models without social influence. Instead, after each new event, one needs
to compute the waiting time to the next event for all cases still at risk and continue
iteratively in this fashion until all cases have had the event. Therefore one needs to cal-
culate N¥(N*~ 1)(N* —2)- 1 = (N*)! waiting times to get the diffusion history for a so-
ciety with N* members. (The need to calculate (N*)! waiting times is the reason that it
is very time-consuming to simulate the diffusion history of a very large society.)

In step 3, F(w) has the usual definition
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Fay= 1-exp(- I:r(-c)d-c),

and the waiting time for case n, w,, is found as

log u,
Wn = explovx )+ exp(BY ,)Zse s(r) EXPXY W +8'Zps)

NOTES

1. The regularity conditions are discussed in Theil (1971) @d can be informally stated as fol-
lows: (1) The first three derivatives of the log likelihood function with refpect to the parameters
are finite for all parameter values and almost all data values. (2) Exp.ectauo.ns c?f first and secgnd
derivatives of the log likelihood function can be obtained. (3) Th.e third derivative of the log like-

i ion is less than a function that has a finite expectation.
hhogfiél\ll::?c:isl:ory Generator (EHG) was originally written by James C. Crutchﬁeld under
Nancy Tuma’s guidance and later extended by Eric Bloch. Eric Bloch and Henrich Greve devel-
oped the module that generates diffusion histories. '

3. An interval estimator for the diffusion model has not yet been implemented. Its dz.’.vek.)p-
ment requires decisions about what to assume concerning influences among cases with tied
evel::. t\l?rVI::e:;'mtted runs that did not converge in computing the other statistic§ in Table 3.

5. The normal approximation to the binomial distribution can be used ?o est'nmz?te the chances
of drawing various sample sizes. For example, if p = .5 and the p.vogulauon size is 200, d}e ex-
pected sample size is 200(0.5) = 100, and the standard dev1at1f)n. of the sample size is
1200(0.5)(0.5) = 7. Then, roughly 95 percent of the samples are within the range 86 to 114.

6. For applications of this approach in organizational studies, see Greve (1995, 1996) and

i 1997).

Dav;f la:gecr;?:ll(i sam;)wling, many sample sizes are smaller than the average. The smaller than

cause most of the imprecision in the estimates.
aver;gS::xI:ﬁL::viﬁch;:sures require completl:. data on the social netwc?rk in the whole popula-.
tion. This requirement is familiar to social network researchers (see reviews suchas l}un 1980;
Bonacich 1987; Marsden 1990; Borgatti and Everett 1992). Data on a sample sufﬁc'e in measur-
ing certain aggregate network properties, such as the density of ties or the Rropomon of actors
with a certain characteristic (Granovetter 1976; Frank 1981; Frank and Snijders 1994).
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